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This research program has been concerned with the cevelopment of a new generation
of ccmputer-aided techniques for the dynamic analysis of complex structural systens.
These techniques which use powerful synbolic processors such as MACSYMA are
expected to facilitate the derivation and analysis of Green's functions of

inferconnected distributed parameter structures. The present approach uses
integral methods to combine the transfer functions of the baseline structure with
those of discrete substructure attachments in order to obtain the transfer function
of the interconnected system. This resultant transfer function is then transformed
into a form which lends itself easily to inverse Laplace transformation, yielding
the Green's function of the interconnected system. Such algebraic results are
expected to improve the understanding of the effects of substructure attachments,

z. e.g. active and passive vibration controllers, on thh dynamics of large flexible
structures.
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ABSTRACT

This research program has been concerned with the development of a new
generation of computer-aided techniques for the dynamic analysis of complex
structural systems.These techniques which use powerful symbolic processors such
as MACSYMA are expected to facilitate the derivation and analysis of Green's
functions of interconnected distributed parameter structures. The present
approach uses integral methods to combine the transfer functions of the baseline
structure with those of discrete substructure attachments in order to obtain the
transfer function of the interconnected system. This resultant transfer function is
then transformed into a form which lends itself easily to inverse Laplace
transformation, yielding the Green's function of the interconnected system. Such
algebraic results are expected to improve the understanding of the effects of
substructure attachments e.g. active and passive vibration controllers, on the
dynamics of large flexible structures.
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SUMMARY

This final technical report provides a comprehensive, cumulative, and substantive
summary of the progress and significant accomplishments achieved during the
total period of the research carried out under the sponsorship of AFOSR
Contract No. F49620-89-C-01 12, awarded to AEDAR Corporation for the period
September 1, 1989 to August 31, 1991. The research effort has addressed the
issue of computer-algebraic techniques for analyzing complex interconnected
flexible structures, and the application of such computer-algebraic tools to the
analysis of distributed parameter structures to which discrete substructures have
been attached. Using the benchmark structural system consisting of a uniform
cantilevered Euler-Bernoulli beam with a spring-mass attachment, it was
establis' ,,d that a Green's function for the combined structure can be derived
algebraically, based on the Green's function of the baseline structure, and that of
the attached substructure. The derived Green's function was shown to be
consistent with a series representation consisting of contributions from the natural
modes of the combined system. This fact was verified by comparing the results of
the proposed approach to that obtained using the finite element method.
Furthermore, by representing the effects of active structural controllers by
functions which are analogous to those of attached discrete substructures, this
technique was also used to study the system parameters of output feedback
controlled structures, as well as the sensitivity of closed-loop modal parameters
of controlled structures to sensor/actuator placement and feedback gains.
Manuscripts of papers which have been submitted for journal publications are
included in the appendix to this report.
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I. OBJECTIVES OF THE RESEARCH

The objectives of the research effort were:

(1) To develop computer-algebraic techniques (using MACSYMA) for analyzing
the Green's functions of interconnected structural systems, e.g. uniform beams
which have been modified by the attachment of spring-mass substructures at
discrete locations.

(2) To evaluate the accuracy, effectiveness and generality of these methods by
comparing results with those obtained using more conventional approaches, such
as the finite element method.

(3) To apply the developed techniques to the analysis of the effects of active
controllers on distributed parameter structural systems.

II. STATUS OF THE RESEARCH EFFORT

For simple structures such as uniform Euler-Bernoulli beams and flat plates, the
Green's functions can be derived directly from the partial differential equations
subject to appropriate boundary conditions. In some cases the expression for the
Green's function is obtained in a closed but "split" form (i.e. the expression takes
different forms for response locations that lie on different sides of the excitation
location); however, the more general derivations result in an infinite series of
terms contributed by the characteristic functions and parameters of the system.
Practical structures are usually more complicated, and in general may not lend
themselves to direct derivation of the Green's functions. In many instances, it is
possible to idealize the real structural system by an interconnection of simpler
structures. Many authors have examined the problem of calculating the free
vibration modes and frequencies of simple beams with discrete attachment of
lumped parameter substructures. In calculating the free vibration modes and
frequencies of the combined system, some authors have utilized the Green's
function of the unmodified beam. These efforts did not address the derivation of
the Green's functions of the combined system, which are suitable for the forced
response analysis.



General methods for obtaining the Green's functions of interconnected structural
systems, using integral equations and generalized functions to combine the
Green's functions of the constituent structures are available. These techniques
accept the Green's functions of the substructures in whatever analytical form that
they are available. However, because of the algebraic manipulations necessary to
obtain the final result, the manual implementations of these methods have been
restricted to simple interconnections. In order to deal with more realistic
situations, which may involve multiple interconnections, this research has
explored the utilization of computer algebraic approaches to this problem. With
computer algebra the implementation of this technique becomes feasible for any
baseline structure for which the Green's function is available, and for any
number of arbitrary interconnections, provided the appropriate functions are
available for representing the response/excitation relationships. Because the final
form of the Green's function of the combined system may be very complicated, it
is desirable to have a form for the Green's function which displays the
contributions of the characteristic modes of the system, and from which these
functions and parameters can be extracted when needed. In this research, the
example of the cantilever beam with a spring-mass attachment has been used to
illustrate the proposed approach.

For dynamical systems governed by differential equations of the Sturm-Liouville
class, spectral techniques were used to derive the Green's functions as an infinite
series of contributions from the set of basis functions, which are obtained from
the homogeneous equation. If the Green's function of the combined dynamical
system is assumed to retain this algebraic form, then the expressions obtained by
integral methods can be manipulated algebraically to yield the basis functions and
characteristic parameters which correspond to the combined system. When the
combined dynamical system is undamped (i.e both the baseline structure and the
attachments contain no dissipative elements), these basis functions and
characteristic parameters yield the free vibration modes and frequencies of the
combined structure. But when the baseline structure and/or the attachments
include damping, methods that calculate the free vibration modes and frequencies
directly are not applicable, since there are no free vibrations, and the method of
separation of variables (which is necessary for such methods to work), is no
longer feasible. This problem does not arise if the Green's function of the
combined system is obtained first, using integral methods. The basis functions and
characteristic parameters that are obtained using the derivations developed in this
research, would then correspond to the complex modes and parameters that
would be obtained if a modal parameter extraction were performed for the
damped system.
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DERIVATION OF GREEN'S FUNCTIONS FOR
DISTRIBUTED PARAMETER STRUCTURES MODIFIED BY DISCRETE

SUBSTRUCTURE ATTACHMENT USING COMPUTER ALGEBRA

Fabunmi, J. 1 and Chang, P. 2

INTRODUCTION

Large interconnected space structures which are deployed for applications in low-to-
zero gravity environments have posed new challenges to structural dynamicists, not so
much because of their physical size and the operating environment, but mainly because
of the need for precise control of their motions. The stringent specifications on the vi-
brations (jitter) which can be tolerated during operation make it important to have good
analytical models which can facilitate the design of active controllers which are used to
suppress unwanted vibrations. Because of the need to include higher order elastic modes
in the dynamical analysis, numerical techniques (e.g. Finite Element Method) usually
involve large order matrices which are susceptible to ill conditioning, which may lead to
unanticipated losses in accuracy. Alternative approaches which try to avoid the problem
of large order matrices, involve the derivation of Green's functions (also known as impulse
response functions) for the structural system. These approaches permit the treatment of
the structure as a distribilted parameter system, thereby avoiding the manipulation of
large order matrices. The response of the structure at a given coordinate due to excitation
at another, is calculated directly without the inversion of matrices. The forced response
of the structure due to an arbitrary excitation force, is simply obtained as the convolution
integral between the Green's function and the excitation force.

For simple structures such as uniform Euler-Bernoulli beams and flat plates. the
Green's functions can be derived directly from the partial differential equations subject
to appropriate boundary conditions [Bishop 1960], [Butkovskiy 1982]. [Chen 1966]. In
some cases the expression for the Green's function is obtained in a closed but "split" form
[Bishop] (i.e. the expression takes different forms for response locations that lie on dif-
ferent sides of the excitation location); however, the more general derivations result in an
infinite series of terms contributed by the characteristic functions and parameters of the
system. Practical structures are usually more complicated, and in general may not lend
themselves to direct derivation of the Green's functions. In many instances, it is possible
to idealize the real structural system by an interconnection of simpler structures. Many
authors have examined the problem of calculating the free vibration modes and frequencies
of simple beams with discrete attachment of lumped parameter substructures [Strutt and
Rayleigh 19451, [Young 1948], [Bisplinghoff 1955], [Bishop 1960], [Dowell 1979], [Nicholson

1 President, AEDAR Corporation, 8401 Corporate Drive, Suite 406, Landover, MD 20785.

2 Associate Professor of Civil Engineering, University of Maryland. College Park, MD 20742.



and Bergman 1986], [Broome 1989], to name just a few. In calculating the free vibration
modes and frequencies of the combined system, some authors have utilized the Green's
function of the unmodified beam [Nicholson and Bergman], [Broome], and [Wickert and
Mote 1990]. These efforts did not address the derivation of the Green's functions of the
combined system, which are suitable for the forced response analysis.

General methods for obtaining the Green's functions of interconnected structural sys-
tems, using integral equations and generalized functions to combine the Green's functions
of the constituent structures, have been published by [Butkovskiy 1983]. These techniques
accept the Green's functions of the substructures in whatever analytical form that they are
available. However, because of the algebraic manipulations necessary to obtain the final
result, the manual implementations of these methods have been restricted to simple inter-
connections. In order to deal with more realistic situations, which may involve multiple in-
terconnections, this research has explored the utilization of computer algebraic approaches
to this problem. With computer algebra [Pavelle 1985], [Rand 1984] (e.g. MACSYMA).
the implementation of Butkovskiy's technique becomes feasible for any baseline structure
for which a Green's function is available, and for any number of arbitrary interconnections.
provided the appropriate functions are available for representing the response/excitation
relationships. Because the final form of the Green's function of the combined system may
be very complicated, it is desirable to have a form for the Green's function which dis-
plays the contributions of the characteristic modes of the system, and from which these
functions and parameters can be extracted when needed. In this paper. the well-studied
example of the cantilever beam with a spring-mass attachment has been used to illustrate
the proposed approach.

For dynamical systems governed by differential equations of the Sturm-Liouville class.
spectral techniques can be used to derive the Green's functions as an infinite series of
contributions from the set of basis functions, which are obtained from the homogeneous
equation [Keener 1988]. If the Green's function of the combined dynamical system is as-
sumed to retain this algebraic form. then the expressions obtained by Butkovkvi's method
can be manipulated algebraically to yield the basis functions and characteristic parame-
ters which correspond to the combined system. When the combined dynamical system
is undamped (i.e. both the baseline structure and the attachments contain no dissipa-
tive elements), these basis functions and characteristic parameters yield the free vibration
modes and frequencies of the combined structure. But when the baseline structure and/or
the attachments include damping, methods that calculate the free vibration modes and
frequencies directly e.g. [Nicholson] are not applicable, since there are no free vibrations,
and the method of separation of variables (which is necessary for such methods to work),
is no longer feasible. This problem does not arise if the Green's function of the combined
system is obtained first, using the methods proposed by Butkovskiy. The basis functions
and characteristic parameters that are obtained using the derivations presented in this pa-
per, would then correspond to the complex modes and parameters that would be obtained
if a modal parameter extraction were performed for the damped system.

The remainder of this paper has been organized as follows. First the spectral form
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of the Green's functions for systems governed by equations of the Sturm-Liouville class.
are presented; followed by the result of Butkovskiy's method for obtaining the Laplace
Transform of the Green's function of a combined dynamical system which consists of a
distributed parameter baseline structure to which a lumped parameter substructure has
been attached. The derivations of the algebraic algorithms for obtaining the modified
characteristic parameters and characteristic functions are then presented. This is followed
by a number of examples which consider the well-studied case of a cantilever beam and a
spring-mass attachment at the tip. These examples are used to confirm that the charac-
teristic parameters and functions recovered by these algorithms do indeed agree with those
given by Young [1948], and the finite element method.

Spectral Form for Green's Functions of Sturm-Liouville Systems

Let the response of a distributed parameter dynamical system to excitation w(xl . t)
be Q(x 2 ,t); xi E M1 , x2 E M 2 , t E 0; where M1 and JW2 are sets of spatial variables of
the excitation and response signals, respectively, and Q is an interval of time [to. tI]. The
partial differential equation of motion can be written as:

Lz, 1 {Q(x 2 ,t)} = w(x 1 ,t). (1)

where L,,{} is a partial differential operator of the form:

L,,f} = L(x,O/Ox){} - A(a/&){}. (2)

By defining a Green's function which satisfies the following equation:

Lz,f{G(x, ,t, r)} = 6(x - C)6(t - r), (3)

the solution to Eq.(1) is given directly by:

Q(x 2 ,t) = j G(x 2 , ,t, r)w(., r)ddr. (4)

For stationary systems, G(z, , t, r) is of the form G(x, , t - 7), and the Laplace transform
of Eq.(3) gives:

(L(x,O/&r) - A(p)){W(x, ,p)} = 6(x -c), (5)

3



where p = a + iw is the Laplace variable, and W(x, e, p) is the Laplace transform of
G(x, , t - r). Although Eq.(5) gives W(x, ,p) the right to be called a Green's function.
it is convenient to distinguish it from G(x, , t - r) by using the term "transfer function."
since this is consistent with common practice in control theory. In this paper. as was
done in [Butkovskiy], G(x, C, t - r) will be called the Green's function. and WV(x. C, p). the
transfer function. G(x, C, t - r) and W(x, ,p) form a Laplace transform pair.

For simple structures such as uniform beams, W(x, C,p) is available in a closed but
"split" form [Bishop], however the inverse Laplace transform of this form is not a simple
expression. It is of interest to formulate a more general form for W(x, C, p) which is not only
applicable to a broader class of structures, but also for which the inverse Laplace transform
is a straightforward expression. If O4'(x) and A(pk) are the characteristic function and
characteristic parameter of the following eigen-value equation: for k = 1.2 ..... 0. subject
to the appropriate boundary conditions;

L(x,,Ol8x){f(x)} = A(p)O(.

It has been shown [Keener], [Fabunmi 1989], that for systems governed by differential
equations of the Sturm-Liouville class, the transfer function is of the form

W(XCP) = 0Z Ok(X)l/L(C) (7)k=1

If for example A(p) = -O 2 p2 , as is the case for a uniform beam where 32 = pA. the mass

per unit length [Timoshenko], the Green's function given by the inverse Laplace transform
of Eq.(7) is simply:

G(x,1,t) 5-7 _k(x),k(f)sinipkt. (S)
Z3~ Pk

Transfer Function for Combined Distributed Parameter System with Lumped
Parameter Attachment

Consder a lumped parameter substructure governed by the constant c-efflcient ordi-
nary differential equation:

W,(d/dt){Qc(t)} = wc(t). (9)
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where w,(t) is the applied excitation at the attachment point, Q,(t) is the response of
the substructure at the attachment point, and W(d/dt) is the differential operator with
constant coefficients. By taking the Laplace transform of Eq.(9), an algebraic equation is
obtained which can be used to obtain the ratio of the Laplace transforms of the excitation
force to the response, as:

we(p) = WC(V). (10)

If the coordinate of attachment of this substructure to the distributed parameter baseline
structure is x = b, the new transfer function for the combined system has been shown by
Butkovskiy [1983] to be:

=Wo(x, 
b, p)Wo (b, 1p)

1/W(p) - Wo(b.b.p)'

where Wo(x,6,p) is the transfer function of the unmodified struc.ure. and 11' (x. ,p) is that
of the combined system. The expression given by Eq.(11) is an exact relationship between
the baseline transfer function and the transfer function of the combined system. If the
baseline transfer function is available in exact form, the transfer function of the combined
structure will also be obtained exactly, using Eq.(11). However, it is still necessary to
obtain the inverse Laplace transform of the transfer function in order to obtain the Green's
function. Using the results of the preceding section, if the transfer function is transformed
into its spectral version, the inverse Laplace transform is easier to obtain. The loss of
accuracy implied by the truncation of the infinite series in the spectral version is really not
that much of a problem in a computer algebraic environment, since it is feasible to include
an algebraic routine which checks the relative contribution of each additional term in the
series, and terminates the computation when a desired accuracy is obtained.

The next section presents the formulation for the algebraic algorithms which were
used to transform the transfer function of the combined system into the spectral form.
by deriving the characteristic parameters and characteristic functions which correspond to
the transfer function obtained in Eq.(11).

Algebraic Algorithms for Modified Characteristic Parameters and Functions

Let the transfer function of the baseline system be given by:

Wo(X, ,p) = Z: V)k(X)Vkok(6) . 1 (12)2_ 2• / 3 2 -
k= P POk o

5



The purpose of the algebraic algorithms proposed in this paper, is to recover from Eq. (11)
the transfer function of the combined system in a form similar to Eq.(12). This is done
by deriving the appropriate functions and parameters which correspond to the combined
system; i.e. the task is to find I1 k, Pik and 01k, k = 1,2.... 10, such that the result given
in Eq.(11) is equivalent to an expression of the form:

00 Oik(x)V'k() 
1Wi (X, CP) = L 22 2(13)

k=1 P Pik 1k

Note that in order to retain the general form of the transfer function. a new set of basis
function needs to be used. The characteristic parameters of the updated system pik, k =

1, 2,... are the roots of the equation:

1
Wo(b,b,p) = 0. (14)Wo(p)

Computer algebra is used to expand and simplify the left hand side of Eq.(14) into a ratio
of polynomials in p, the numerator of which is then made the argument of an algebraic
routine that isolates all its real and complex roots.

Let the kth updated basis function be expanded in terms of the previous set of basis
functions:

00

Vlk(x) = aknO().(15)
n=1

The objective of this algorithm is to derive the coefficients ak,, using information ob-
tainable from the characteristic parameters and the previous set of basis functions. Direct
substitution of (15) into (13) gives:

WI (X, Co o)=0 00__knakmOn(X)00.() (1

k=1 n== m=1 P -Pi k(

Let Zn(p) be defined as

Z f(P) f [W \ + W.(xb,p)W.(b, 'P)lo,(x)V'0o( )dxd. (17)

J,(p= W(1,) 1/W,(p) - Wo(b,b, p)J

MM

Performing this integral gives
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1  Wc p)(p+pIk) [ p1(on(b)18

where T2 P2 p P21k)Hk(p)W( b. b~ 2'-(b 2
where

PPik Wo(b,b,p) Wep)9

Performing the integral operation of (17) by using (11) and (16), and ultilizing the or-
thonormality of the basis vectors Oon, we get

J J z aknak _pb0n(X)0k ( o() ()dxdk = p02 1

M M k=1 n=l m=1 k=

By virtue of the equivalence of (11) and (16), it follows from (17) and (20) that:

00 22
p2 _ p Z(p). (21)

One way of obtaining akn from (21) is to express Zn(p) as a ratio of polynomial functions
of P;

z(P)_ -NZ,(P)DZ,(P) (22)

Let

DZk,(p) - DZ(p ) (23)

(P2 - p2

then,

C'kn = liM NZ,(p) (24)

If all the functions of p appearing in (18) and (19) are expressed as ratios of polynomials
in p, i.e.

7



Wc(P) = NWc(P)/DWc(P),

Wo(b, b,p) = NWo(p)/DWo(P), (25)

Hk(p) = NHk(p)/DHk(p).

It follows that

NZn(P) =(p 2  Pk)(P2 - P )DWc(P)NW(P)NHk(P) (26)
+ (p + plk)Vo.(b)2 NWc(p)DW(P)DHk(P),

and

DZ.(p) (p2 pik)(p- -0pn) DW(p)NIVo(P)NH(p): (27)

so that

DZkn(P) = (p 2  po )DW (p)NW(p)NH(p). (28)

which gives

2(29)

0 2 - (p2' -p2o) 2 W(b,b,Plk)Hk(plk) 32lk ik on

Eq.(14) insures that Hk(plk) does not vanish. The computation of (29) should be unprob-
lematic. The implication of plk having the same value as Pon is simply that the kth basis
function of the modified system is identical to the nih basis function of the baseline system.
As for the vanishing of Wo(b, b, Pik) which can occur only if the attachment point of the
substructure happens to be an immobile point on the baseline structure. it is obvious that
the attached substructure will not affect the dynamics of the system.

The basis functions O/lk(X) of the modified structure are usually normalized such that

0,lk(X) 2 dX = 1; (30)

which implies that

00

2 = 1 (31)
n= 1

8



This condition leads to the determination of ik as

,21 = 2,/p2 (32)

In general, the coefficients akn are complex valued. The result obtained from (29)
subject to (31) only yields the moduli of akn. In order to determine the phase of aCkn (i.e.
the real and imaginary parts of akn), it is necessary to invoke additional requirements cn
ak. For systems without dissipation, it is reasonable to require the modified functions to
describe the unforced motions of the system, i.e.

Olk(X) = W.(x,b,plk)W(pIk)V'k(b). (33)

Upon expanding (33) in terms of the baseline functions and the transformation coef-
ficients, we get:

Qkn = 2 2 -- 2 • &km,nom(b)Von(b). (34)M=1 0.(pik -Pvon)

Define an objective function:

h, -0I1 W o(Pk)OOL(b) 0
k- n(Pn #2 2 •__ akm,, om(b)i. (35)n=1 o.(pik - An) M=,

Any convenient routine can be used to seek the phases of the a's such that hk is a
minimum. For undamped systems, an absolute minimum of zero (within limits of machine
error) should be achievable, whereas for damped systems, the minimum of hk may not be
zero. However, this method suggests that the answer should approach the undamped case
when the modified characteristic functions are real.

Example

A cantilever beam with a spring and mass attached to the free end is analyzed for
different values of the spring constant and mass (Fig.1).

This example is selected because the results can be compared to results obtained by
[Young]. The location of the spring mass attachment was chosen to be b/L = 1.0. The
spring stiffness K was chosen to have the ratios K/Kb = 0.101, 1.010, 10.101, and 50.505;
where Kb = 3EI/L3 is the stiffness of the cantilever beam. The mass M was selected to
have the ratio M/(pAL) = 0, 0.1, and 1; where p = density of the material: A = cross
sectional area of the beam, and L is its length.

9
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Figure 1 - Schematic Diagram of Beam with Spring-Mass attachment

Five combinations of spring-mass attachments as shown in Table 1 were used. The
results were compared to results of a finite element analysis using three different meshes
as well as results obtained by Young [1948].

Table 1 - Spring Constants and Masses of Modified Structures.

Modified Structure K/Kb M/(pAL)

1 0.101 0.1

2 1.010 0.1

3 0.101 1

4 10.101 0

5 50.505 0

The comparison of natural frequencies generated by the proposed method, the finite
element method, and the method outlined by Young [481 are shown in Tables 2 through
6. The nondimensional values shown in the these tables are the ratio between the fre-
quencies calculated and the fundamental natural frequency of the cantilever beam without
attachements.

10



Table 2 - Comparison of Frequencies for Modified Structure 1
Recovered from the Transfer Function, Young's Method, and the

Finite Element Method with Different Mesh Definition.

Mode F.E. F.E. F.E. Young's Proposed

(2 elem) (10 elem) (50 elem) Method Method

1 0.820 0.886 0.888 0.886 0.885

2 4.528 5.479 5.532 N/A 5.516

3 240 15.63 16.40 N/A 15.87

Table 3 - Comparison of Frequencies for Modified Structure 2
Recovered from the Transfer Function, Young's Method. and the

Finite Element Method with Different Mesh Definition.

Mode F.E. F.E. F.E. Young's Proposed

(2 elem) (10 elem) (50 elem) Method Method

1 1.104 1.187 1.190 1.190 1.188

2 4.69 5.51 5.56 N/A 5.55

3 240 15.64 16.43 N/A 15.88

Table 4 - Comparison of Frequencies for Modified Structure 3
Recovered from the Transfer Function, Young's Method, and the

Finite Element Method with Different Mesh Definition.

Mode F.E. F.E. F.E. Young's Proposed

(2 elem) (10 elem) (50 elem) Method Method

1 0.456 0.467 0.467 0.470 0.465

2 4.315 4.635 4.643 N/A 4.644

3 240 246 11.6 N/A 14.7

11



Table 5 - Comparison of Frequencies for Modified Structure 4
Recovered from the Transfer Function, Young's Method, and the

Finite Element Method with Different Mesh Definition.

Mode F.E. F.E. F.E. Young's Proposed

(2 elem) (10 elem) (50 elem) Method Method

1 2.825 2.867 2.869 2.881 2.873

2 4.921 7.021 7.142 N/A 7.134

3 240 17.38 17.89 N/A 17.85

Table 6 - Comparison of Frequencies for Modified Structure 5
Recovered from the Transfer Function, Young's Method, and the

Finite Element Method with Different Mesh Definition.

Mode F.E. F.E. F.E. Young's Proposed

(2 elem) (10 elem) (50 elem) Method Method

1 4.029 3.985 3.983 3.982 3.990

2 7.430 9.923 9.993 N/A 10.117

3 240 18.65 19.24 N/A 19.37

Expressions (36), (37) and (38) are the algebraic results derived for the first, second
and third modes of the modified structure Number 5. based on the spectral expansion of
Eq.(15).

011(x)= 2.027e- 4 (- sin(0.14x) + cos(0.14x) - e - 0 14z)

- 5.645e-4 (- sin(0.lx) + cos(0.llx)- e-011')

+ 3.267e - 6 (-1288 [- sinh(0.079x) + sin(0.079x)]

+ 1289 [- cosh(0.079x) + cos(0.079x)])

- 1.004e - 3 (-54.636 [- sinh(0.046x) + sin(0.047x)] (36)

+ 53.645 [- cosh(0.047z) + cos(0.047x)])

- 0.02033(-3.04 [- sinh(0.019x) + sin(0.012x)]

+ 4.14 [- cosh(0.019x) + cos(0.012x)])
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012(x) = - 3.782e- 4 (- sin(0.17x) + cos(0.17x) - C-."')

+ 8.650e- 4 (- sin(0.14x) + cos(0.14x) - C-0.14,)

- 2.533e (- sin(.11x) + cos(.11x) - e-0 -11-)

+ 1.932e - " (-1288 [- sinh(O.079x) + sin(O.079x)]

+ 1289 [- cosh(O.079x) + cos(O.079x)])

+ 1.530e - 3 (-54.636 [- sinh(O.046x) + sin(O.047x)] (37)

+ 53.645 [- cosh(O.047x) + cos(O.047x)])

- 0.01238(-3.04 (- sinh(0.019x) + sin(0.012x)]

+ 4.14 [- cosh(0.019x) + cos(0.012x)])

13(X)= 4.749e- (- sin(0.17x) + cos(0.17x)- -0.177)

- !.144e- 3 (- sin(O.14x) + cos(O.14x) - f-0.14,)

+ 4.079e - 3 (- sin(O.11x) + cos(.11x) - , -0,"x)

+ 7.411e-5(-1288 [-sinh(O.079x)+ sin(O.079x)]

+ 1289 [- cosh(O.079x) + cos(O.079x)])

- 3.529e - 4 (-54.636 [- sinh(O.046x) + sin(O.047.z)] (38)

+ 53.645 [- cosh(O.047x) + cos(O.047x )])

+ 0.004103(-3.04 [- sinh(0.019x) + sin(0.012x)]

+ 4.14 (- cosh(0.019x) + cos(0.012x)])

These expressions are plotted and compared to the result of the finite element analysis
using 50 elements. It can be observed that the proposed method predicts the mode shapes
and frequencies of the modified structure accurately. It can therefore be concluded that
Eq. (13) is the correct transfer function of the modified structure.
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Figure 2 - Comparison of Mode Shapes Predicted by the Proposed
and the Finite Element Methods.

Conclusions

This paper has presented a method which utilizes computer algebra to derive the
Green's funtion of a combined dynamical system consisting of a distributed parameter
baseline structure to which a discrete substructure has been attached. The general form of
the Green's functions of systems governed by Sturm-Liouville type differential equations
has been used to recover the characteristic functions and characteristic parameters of the
combined system from the expressions obtained for the Green's functions using methods
based on a general theory of interconnected distributed parameter systems. Examples of a
uniform cantilever beam with discrete spring-mass attachments were used to confirm the
agreement of the extracted parameters and functions with other methods such as the finite
element method.
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SYSTEM PARAMETERS OF OUTPUT FEEDBACK CONTROLLED

FLEXIBLE STRUCTURES

James A. Fabunml

AEDAR Corporation

8401 Corporate Drive, Suite 460

Landover, Maryland 20785

ABSTRACT

The combined system consisting of the baseline flexible structure modified by the

system of active controllers is considered as a unified dynamical system. Techniques

based on ._omputer algebra are used to derive expressions for the transfer functions of

the modified system, using the known transfer functions of the baseline flexible

structure and the feedback gains of the active controller. The roots of the characteristic

polynomial of this transfer function give the system resonant frequencies and damping

parameters. Using the computer algebraic system MACSYMA, expressions for these

parameters which are explicitly dependent on the output feedback gains of the active

controller, are presented. These results permit the parametric study of the placement

of the resonant frequencies and damping parameters of the combined system, as

functions of the feedback gains. Numerical examples are used to illustrate the

application of these results to the calculation of active controller feedback gains based

on the requirement that certain modes have specified modal damping while the

closed-loop frequencies remain unchanged. [Key words: Active Control; Smart

Structures; Computer Algebra; Dynamics of Flexible Structures]
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Parameters of Controlled Structures

NOMENCLATURE

ai , aj = measurement coordinates for ith and jth controllers

bi, bj - force application coordinates for ith and jth controllers

Cji) - symbolic coefficient of jth power of p in the i-term derivation

G(x, ,t,tr) - Green's function

gi, gj = displacement feedback gains of ith and jth controllers

hi, hj - velocity feedback gains of ith and jth controllers

I - identity matrix

L - number of discrete attachments (controllers)

Lxt{ } = partial differential operator

p = Laplace variable

P0k = kth parameter of baseline system

Q(x,t), Q(x,p) = system response and its Laplace transform

t = time

W(x,4,p) = system transfer function

Wci(p) = transfer function of ith controller

w(x,t), w(x,p) = forcing function and its Laplace transform

x, x1 , x2  = spatial coordinates

i  coefficient of the ith power of p in characteristic polynomial

3, Ok = modal weights
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Parameters of Controlled Structures

80 Dirac delta function

{1, j = vector, with elements defined in Equation(15)

- spatial coordinate

9P0k = kth orthonormal modal function for baseline system

a,00ni,01 ni = exponential growth rate

- time

(0,0)0n1,(01 n = frequency

{o), i - vector, with elements defined in Equation(13)

= spatial coordinate

Q], -ij matrix, with elements defined in Equation(12)

INTRODUCTION

The technology of active control of structures has been the subject of considerable

research interest over the past decade in part because of the need to suppress

excessive vibrations associated with the deployment of large flexible structures in

space (Various Authors, 1986; Atluri and Amos (Ed.), 1988). Because space-borne

structures cannot afford the weight penalties of classical vibration control devices such

as absorbers or isolators, a lot of effort has been devoted to various means of actively

controlling the dynamic characteristics of these structures. These techniques use an

external source of energy to apply controlling forces (and/or moments) on the structure

which are determined in some relationship to thA measured or estimated response of

the structure. More advanced implementations of active structural control involve the

3



Parameters of Controlled Structures

embedding of sensors, actuators and processors in the structure itself. Such "smart

structures" are able to adjust the characteristics of their controllers e.g. feedback gains,

in response to changing dynamical environments. The objective of this paper is to

present the results of recent research aimed at the development of simple algorithms

for calculating actuator feedback gains, based on specified modal characteristics of

the closed-loop system.

The most popular approach to the design of the active control schemes follows the

paths of modern control theory which involves optimal state-space feedback control

(Various Authors, 1984, 1986; Atluri and Amos (Ed.), 1988; O'Donoghue and Atluri,

1985; Homer and Walz, 1985), or output feedback control (Meirovitch, 1988; Garcia

and Inman, 1990). A finite order mathematical model of the structure is required. The

state variables are the [generalized] displacements and [generalized] velocities of the

structure. In the case of state-space feedback, the state of the system is estimated from

measurements at selected coordinates and this estimate- is used to derive the

feedback gains, using a method based on Pointryagin's principle for solving a

constrained optimization problem. This method involves the computation of a positive-

definite matrix satisfying the algebraic matrix-Riccatti equation (Junkins and Rew,

1988). Output feedback control does not use the entire state-space estimate for

feedback; instead only the measured responses are used. The advantage is that the

practical implementation of the controller is simpler and errors associated with the

estimation of unmeasured responses are eliminated (Garcia and Inman, 1990). For

designs based on these methods, the control strategy is specified in terms of the

minimization of an objective function. For a given objective function and a set of initial

conditions, the controller feedback gains are calculated once and for all. A question
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Parameters of Controlled Structures

that is often asked is whether or not optimal control necessarily implies intelligent

control. For the control to be considered intelligent, the system must have the ability to

alter its control strategies, and readjust the feedback gains, based on some reasoning.

An example of such reasoning is to have a controlled structure which, upon sensing

(using its embedded sensors) that the spectral distribution of its current external

excitation is close to one or more of its resonant modes (the parameters o which has

been stored in the memory of its embedded processor), can alter the strategy of its

active controller such that the necessary feedback gains are computed (using its

embedded processor) which will maximize the modal damping of the most highly

excited modes. This type of approach requires that algorithms be available for directly

calculating the controller feedback gains, based on specifications of required closed-

loop modal parameters. The development of such algorithms has been one of the

motivations of this research effort.

Recent advances in computer algebra have made available symbolic manipulation

facilities which extend the tools of algebra and integro-differential calculus beyond the

traditional limits (Rand, 1984; Pavelle, 1985). Techniques based on computer algebra

were reported by Fabunmi (1989), which permit the derivation of the transfer functions

(Laplace transform of the Green's Functions) of the system resulting from the

attachment of discrete dynamic substructures to a distributed parameter base-line

structure. It is assumed that the algebraic forms of the transfer function of the base-line

structure as well as those of the discrete attachments are known. The mathematical

form chosen for system transfer functions permits the direct determination of the

system parameters as the complex values of the Laplace variable at which

singularities of the transfer function occur. For the class of controllers where the
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Parameters of Controlled Structures

measured output are the feedback variables such as displacements and velocities,

the resulting system is mathematically equivalent to that of the attachment of discrete

"substructures", the transfer functions of which are given by expressions involving the

gain constants and the Laplace variable.

This paper has been organized as follows. In the first section, the equations which

were used to derive the effects of active controllers on the system parameters are

derived. This section includes some pertinent material from (Fabunmi, 1989), for

completeness. The second section presents the expressions for the characteristic

polynomials of the closed-loop system, obtained using MACSYMA on the Symbolics

3620 workstation. This is followed by examples of how these results can be used io

calculate the controller feedback gains based on specified parameters of the closed-

loop system. The basic conclusions of this paper which are presented in the last

section are that (1) new tools based on computer algebra have been developed, for

the analysis of system characteristics of actively controlled structures, (2) alternative

techniques for the design of active controllers have been presented, which make it

possible to design an adaptive controller for which different schedules of feedback

gains can be used to adjust the system parameters as needed, in order to minimize

dynamic response to external excitations.

ANALYSIS OF ACTIVE CONTROLLER EFFECTS

The objective of this section is to present the formulation of the equations that were

used to derive the transfer function of the system resulting from the attachment of a

finite number of discrete linear output feedback controllers to a distributed parameter,
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Parameters of Controlled Structures

baseline system such as a flexible structure. These derivations follow the same lines

as those presented in (Fabunmi, 1989). The dynamic response of a distributed

parameter system are solutions to partial integro-differential equations which can be

represented operationally as:

Lx,{Q(X2 ,t)} = w(x,,t) (1)

where Lx,t { is an integro-differential operator which maps the responses Q(x 2 ,t) on

to the excitations w(x 1 ,t) subject to appropriate boundary and initial conditions on

Q(x2 ,t); x1 is in the spatial domain of the excitations, x2 is in the spatial domain of the

responses and t is time. For linear operators, the Green's function G(x,t,t,z) is defined

such that:

LXt{G(x 2,,t, I'r)} =6(x, - 06" - 'r) (2)

where S( ) is the Dirac-defta function. The response of the system can be conveniently

written in terms of the Green's function as:

Q(x2,t) = if G(x2 ,,t,r)w( ,?r)dd" (3)

since,

L, {e(x2,t)} = jf LX.,{G(X2, ,t, r))w(4, r)d d r

=J 8(x,- 4)8(t- ?)w(4,,r)d~d"

= w(x,,t) (4)

Butkovskyi (1983) has proposed the introduction of a linear distributed block - in

analogy to the lumped parameter block in classical control theory - to represent the
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input-output relationship between Q(x2 ,t) and w(x1 ,t). Thus the schematic of Figure

1(a) is equivalent to the relationship expressed in Equation (3 ) . For dynamical

systems whose responses to stationary excitations are stationary, i.e. the Green's

function is stationary in time, the analysis can be simplified by considering the Laplace

transform of the equations of motion. The role of the Green's function is now played by

the Transfer function, and the relationship of the Laplace transform of the response

Q(x2 ,P) to that of the excitation w(x1 ,p) is given by:

Q(x2,p) = JG(x214,p)w(4,p)d4 (5)

where p = o + io is the Laplace variable; a is the exponential growth rate, and o0 is

the frequency. This relationship is also depicted schematically in Figure 1(b).
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w(x,,t) - G(x2,,t NO Q(x2,t)

(a) Green's Function Representation

w(x,,p) -l W(X2'4'P) 1 -Q(x2'P)

(b) Transfer Fnction Representation

Figure 1. Linear Distributed Block.

Modelling of Active Controller Attachments

The implementation of the active controller design involves the application of

excitation forces at some spatial coordinate x = bi, which are proportional to

displacements and velocities measured at x = ai. For example, the ith controller

excitation force could be written as:

9



Parameters of Controlled Structures

w.(b, ,t) = gjQ(a,,t) + hiQ(a,t) (6)

where gi and hi are the displacement and velocity feedback gains of the ith controller
respectively, i = 1,2,... L, L being the total number of controllers. The Laplace transform
of Equation (6) results in a relationship which is used to define the transfer function of

the ith controller as:

W, (p) = wc(bp)
Q(aip)

= gi + hip (7)

The schematic which represents the combined interconnected system of the baseline

structure and the L active controllers is shown in Figure2. The transfer function of the

combined system shown in Figure 2 is given by the following integral equation

(Butkovskyi, 1983):

W(x,4,p)= fWT(x, q,p)W(i7,4,p)d1 + Wo(x, ,p) (8)

where,

WxX,,p) = JWo(x, in,p)8 3(1l-b,)W(p)8(, -ai)d7

= ( W(X,b,p)W(p)6(4 -a,) (9)
i=1
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w(x,p) IN. WI

I I

L'S(X- bL WA= P) 11( -a,

Figure 2. Schematic of Interconnection of Linear Feedback Controllers

to Distributed Parameter Baseline Structure.

Substituting Equation(9) into Equation (8) and performing the integrat.on, the result is,

L

W(x,4,p) = IWo(X,bi,p)W=(p)W(ai,4,p)+Wo(x,4,p) (10)
i=1

In order to solve for the quantities W(ai,4,p), i = 1,2,....L, both sides of Equation (10) are

successively multiplied by 8(x - am) and integrations are performed over the x domain

for m=1,2 ..... Ltoget:
L

W(am, 4,p) = Wo(a.,b,,p)Wci(p)W(a, , p) + Wo(am, 4,p) (11)
i-1

Equation(1 1) is a system of L linear equations defining L unknown quantities. If an

(LxL) matrix [0] is defined such that its elements are,
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f,.j = Wo(aj,bi,p)W0(p) (12)

and if an (Lxl) vector {(o) is defined such that its elements are,

ca = W(a,,,p) (13)

thon the system of Equation (11) for m = 1,2 .... L can be written in a compact form as:

{CO} = [al]{} + {Y} (14)

where {y} is an (Lxl) vector whose elements are,

yj =WO(aj, ,p) (15)

From (14),

{co} = [I- l-'{7} (16)

where I is the (LxL) identity matrix.

Application of Computer Algebra

The general algebraic form of the transfer function of the baseline distributed system

is taken to be (Chen, 1966; Stakgold, 1979; Butkovskyi, 1982, 1983; Keener, 1988;

Fabunmi, 1989):

W0 x~p= p, J (7

where 90k(X) is the kth orthonormal modal function for the baseline structure, P0k is the
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corresponding modal parameter and JOk2 is the weighting factor or generalized mass.

Although the summation in Equation (17) includes an infinite number of terms, the

practical implementation of that expression requires that only a finite number of terms

be retained. The ability to retain a given number of modes in the algebraic derivation

depends on the power and memory of the computer as well as the number of discrete

modifications to the baseline structure. The substitution of Equation (17) into Equation

(16) and the subsequent evaluation and simplification of the transfer function of the

combined system as shown in Equation (10) is performed using the following set of

MACSYMA routines:

WO(EXX,XXSI,PEE):=BLOCK(

PURPOSE:"EXPRESSION FOR TRANSFER FUNCTION FOR BASELINE

STRUCTURE - I.E. THE FUNCTION WO(X,XSI,P)"

RAT(SUM('PHI(EXX,K)*'PHI(XXSI,K)/(PEEA2-('PO[K]A2),K,N1,N2))/'BSQ)$

GAMMAVECTOR(XXXSI,ARGP):=BLOCK(

GAMMA:ZEROMATRIX(NS, 1),

FOR J THRU NS

DO SETELMX(WO('A[J],XXSIARGP),J, 1,GAMMA))$

OMEGAMATRIX(ARGP):=BLOCK(

CAPOMEGA:ZEROMATRIX(NS,NS),

FOR I THRU NS

DO(

FOR J THRU NS

DO (WOIJ:W0('A[J],'B[I],ARGP),

SETELMX(WOIJ*WCP[I],IJ,CAP_OMEGA))))$
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W(EXX,XXSIPEE,N 11,N22,N33):=BLOCK(

SCALARMATRIXP:FALSE,N1 :N1 1,N2:N22,NS:N33,

FOR KK FROM N I THRU N2

DO STARTP(KK),

FOR N THRU NS

DO WCP[N] :RAT(SUBST(PEE,P,WC[N])),

OMEGA_ MATRIX(PEE), GAMMA_VECTOR(XXSIPEE),

MATRIX:IDENT(NS)-CAP_OMEGA,OMEGA:ZEROMATRIX(NS, 1),

INVERSEMATRIX:RAT(ADJOINT(MATRIX))/RAT(DETERMINANT(MATRIX)),

POLY:DENOM(iNVERSE_MATRIX[ ,1]),

OMEGA:RAT(INVERSEMATRIX. GAMMA),

W1 :RAT(SUM(WO(EXX,B[I],PEE)*WCP[I]*OMEGA[I,1],,1 ,NS)+

WO(EXX,XXSI,PEE)), "DONE")$

W1 gives the expression for the transfer function of the combined system; POLY is the

characteristic polynomial of the combined system. In order to cast the resultant transfer

function into the form of Equation(1 7) for the combined system, the system parameters

Plk are determined as the roots of the characteristic polynomial of the system. In the

above routines, it is possible to consider any range of terms [NI 1,N22] in the baseline

transfer function series, as well as any number [N33] of discrete attachments to the

baseline system. The computer-algebraic results that will be presented in the next

section have been generalized to the case of an arbitrary number of discrete

attachments. This is done by mathematical induction, based on the results provided

by MACSYMA for different number of attachments specified in the function calls.
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COMPUTER-ALGEBRAIC RESULTS

Some results of the derivation of the characteristic polynomials for an arbitrary number

of attachments using one- and two terms in the base-line transfer function series, are

presented in this section. These derivations were performed on the Symbolics 3620. A

uniform one-dimensional baseline structure was assumed in this study, so that I3k2 =P32

for all the k's.

One-term derivation:

POLYNOMIAL(1 )=C~'~p2 +Co(')(p) (18)

where,
L

C o1)(P)= -/ P L.W(P)on,(a1)qo0 (b,)} (19)
i=1

and,

C 2  (20)

Note that the polynomial in Equation (18) is not yet fully explicit in p until the

expressions for Wci(p) are substituted into Equation (19). If these functions are as

shown in Equation(7) then,

L
() (p) = -P3 "p z - _.(g 1+ h I p)9)0o,, (a ) 4pon, (b,) (21)

So that for this class of active controller design, and using the one-term approximation

to the baseline transfer function, the characteristic polynomial in p whose roots are the
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system parameters is given by:

POLYNOMIAL(I)= {p2} p2 - {h o, (a) 0 , (b))} p

O .8 Pon+ li qig, o(a) 470 ,(b)} (22)

Two-term derivation:

POLYNOMIAL(2) = C 21p4 + C(2)(p) p2 +C(2)(p) (23)

where,

C(2), =(,p 2) (24)

0(2)()=-(,2) 2 1.,, r I  WcP ,V 2on(a) pon (bi)

j= =1 j=l

-~ 1 ~.2{pon}- Wc,(P) Lq9on,(a,) P(P0on(a,) J [fo ,(b) (25)
1=1~ n, 0~(b)f

and,
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Co2 (P) = (,2p2, ) (p2pr )

L{Wn [2 0 ,(b,)

I Wa(p)WCj(P)([ on.(a) -qo.(a) o,(aj)J) (26)
i{1 j>ii

([~ v, (b1 ) - 0 12 (bi) J ) o,(bj)}) I

As mentioned earlier, the explicit dependence of the polynomial on the Laplace

variable p will be determined when the appropriate expressions are substituted for the

functions Wci(p). If the controller transfer functions given in Equation(7) are substituted

into Equation (25) and (26), then following a collection of the coefficients of the powers

of p in the polynomial of Equation (23), the result is:

POLYNOMIAL(2) =a 4 p" + a 3 p3 +0 2 p2 +a 1 p+ ao (27)

where,

a4 =(13 2 (28)

3a - hjL/l 7o,,(aj) fiipo.(aj)J i 1 o.(b,)1 (29)
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a2  2) 2o 1:01
a,=-(/I' {Pn,}- = g/ o.a, 3o(a,)JI fl, on2(b,)j j

j=1i1

l h hi L (o'n,(a) - on2(ai) I On,(a)j

L L On,(af (30)i=-1 j'" 90 { ° (b')lx (L 'Pon.(b,) -4p,o.b,)J ion.(b,)g

a,= [hi Pon,(a) fP Oon2(a)J POn2 2oif# pon(b)

i= 0 Pon J4q'n 2 b)J

,o°.,.,,}

1 L (gihj hj L (on , ( a) - n2 ( ) 1 1 Onbj a) (32)

+1 18

I= X" ( L Pon, (b,) - 90% (b,)J ob)

and,

O~=(/p2po2 )- (/p22

,Y 9 (on , ) x L p Oo2(a ) 4on l ,) 2 o(a J

L+ ,g j X(_(,na ) -4p n ( )_ ,o , a (3 2 )

P I oq ,(bj}j

For the class of active controllers considered in this study, iLe those with displacement

and velocity feedback, the preceding expressions permit the explicit understanding of

how the feedback gains affect the resulting system parameters. As a matter of fact,

since polynomials up to the fourth order can be solved in closed form by computer
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algebra, it follows that closed form expressions can be obtained for the combined

system parameters in terms of the feedback gains, as well as the location of the

measurement and actuation points. In the following section, the results for the one-

term derivation will be used to illustrate a possible method for determining the

controller feedback gains when it is desired to achieve specified closed-loop system

parameters. As will be seen, this method involves relatively simple calculations which

can easily be programmed into embedded processors of "smart" structures.

CALCULATION OF CONTROLLER FEEDBACK GAINS

Consider a baseline structure with negligible damping, i.e. Poni = io0nl. By virtue of

the weak coupling of the modes of an undamped structure, the one-term derivation is

adequate for estimating the closed-loop system parameters. Equating the polynomial

of Eq.22 to zero and solving for the real and imaginary parts of Pini,, the frequencies

and exponential growth rates of the closed-loop modes are;

Ct.inf = Ol0 2p, 2 {h i ) n,(ai~~on(bi)} - - {g !on (ai)9 0 r., (b)} (33)

1 L

1,= 2 {hi on, (a)i )on, (bj)) (34)

The damping of the closed-loop system is controlled by the velocity feed-back gains,

whereas the frequency is affected by both the velocity and displacement feedback

gains. If L velocity feedback gains are to be calculated directly based on specified

values of the growth rates of L system modes, Equation (34) provides a set of L
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equations for the L desired values of hi. It may also be desired that there be no shift in

the frequencies of these or some other L modes. In that case, a set of L equations for

the L values of the displacement feedback gains, gi , can be set up as follows:

1  L }2 1 L
2 9 0n(a,) Pon, (b;)} - 1 (ai)po, (bi)} = 0 (35)

Having obtained the values of the velocity and displacement feedback gains in this

manner, it is necessary to check the exponential growth rates of the modes that were

not included in the analysis, using Equation (34). The purpose of this check is to verify

that there are no modes for which the exponential growth rate is positive - an

indication that instability of that mode can be induced by the controller.

EXAMPLE

As an illustration of this approach, consider the cantilevered uniform beam shown in

Figure 3. The beam is 100 meters long, with the following cross sectional properties:

flexural rigidity, El = 1.0e8 N-m2 ; mass per unit length, pA = 1 kg/m. The natural

frequencies and the orthonormal modes of the first ten modes of this beam are shown

in Table 1. The active control system consists of two sensors and two actuators. The

sensors are located at spanwise coordinates 30 and 100 m. The actuators are located

at spanwise coordinates 40 and 100m. Consistent with the notation in this paper, the

active control system is made up of four (4) controllers: controller #1 generates a force

signal at x=40 based on the sensor signal at x=30; controller #2 generates a force

signal at x=100 based on the sensor signal at x=30; controller #3 generates a force

signal at x=40 based on the sensor signal at x=100; and controller #4 generates a

force signal at x=1 00 based on the sensor signal at x=1 00.
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Because of the linearity of both the structural model and the controller design, there

need only be one physical actuator at x=40 and another one at x=100. The force

signals for actuators 1 and 3 are summed and applied to the physical actuator at x=40;

similarly, the force signals for actuators 2 and 4 are summed up and applied to the

physical actuator at x=100. Also, only one physical sensor at x=30 is needed for

controllers 1 and 2, and one physical sensor at x=1 00 is needed for controllers 3 and

4. The table in Figure 3 specifies the sensor and actuator positions for the four

controllers in this example. The objective of this example is to show how to calculate

the velocity and displacement feed-back gains hi , gi, i=1,2,3,4 such that: (1) the modal

damping of four selected modes are as specified in advance; (2) the natural

frequencies of four selected modes (not necessarily the same ones as in (1)) are

unchanged; and (3) none of the first ten modes is destabilized by the active control

system. The restriction to the specification of the parameters of only four modes is due

to the fact that there are only four independent controllers under consideration. The

feedback gains calculated in this manner are not optimal in the usual sense of

minimizing some objective function which is related to both the response and the

control power. The merit of this approach lies in the ability to concentrate available

control power on the damping of certain modes which are considered most responsive

to a given external excitation, without destablizing the other modes. Thus if the nature

of external excitation were to change, and hence require that some other modes be

critically damped, this method affords a means of adjusting the feed-back gains

appropriately.

For each of the four modes for which a desired damping ratio is specified in advance,

Equation 34 gives four linear equations for the four unknown coefficients hi, i=1,2,3,4;

21



Parameters of Controlled Structures

which are the velocity feed-back gains. After the velocity feed-back gains have been

determined, Equation 35 is then used to obtain the additional relations needed to

determine the displacement feed-back gains gi, i=1,2,3,4; based on the conservation

of the natural frequencies of the desired modes. For this example, it is required that the

first mode be critically damped, and that the next three modes be moderately damped.

It is also required that there be no shift in the frequencies of the first four modes of the

beam. Table 2(a) shows the specified damping ratios for the first four modes of the

cantilevered beam. For the first mode to be critically damped, the damping ratio is

specified to be unity. The results of the calculations of the velocity and displacement

feed-back gains are given in Table 2(b) for this example. Having obtained the values

of the four pairs of displacement and velocity feedback gains for the four controllers, it

is now possible to use Equations 33 and 34 to recalculate the closed loop frequencies

and exponential growth rates of all the other modes. The results of this calculation for

the first ten modes of the example uniform cantilever beam, are presented in Table

2(c). This example shows that the feedback gains calculated will yield the desired

damping ratios and frequency shifts without destabilizing any of the first ten modes of

the example beam. So far, there is no guarantee that all the higher order modes will

be stable. If upon checking further, some higher order mode is found with a negative

damping ratio, it is prudent to perform the calculation again, including the unstable

mode among the modes for which the damping ratio is specified. Further research is

needed to develop a more systematic approach for ensuring the stability of the modes

for which specific damping values were not specified in advance.
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CONCLUSION

This paper has presented results of computer-algebraic derivations of the

characteristic parameters of systems consisting of a distributed baseline structure and

output feedback linear active controllers. Expressions which show the explicit

dependence of the system parameters on the displacement and velocity feed-back

gains as well as the measurement and actuator coordinates were obtained for the

cases when the transfer function of the baseline system has been approximated by

retaining one- and two- terms in the infinite series which determine these transfer

functions. An immediate application of these results is the calculation of displacement

and velocity feed-back gains based on requirements that certain closed loop modes

have specified damping ratios. Because of the simplicity of the calculations involved in

this process, it becomes practical to conceive embedded systems which permit the

"smart" structure to readjust its feedback gains in order to increase the damping of

those of its modes which are most strongly excited by the external dynamical forces.

The example of a cantilevered uniform beam was used to illustrate how to implement

this methodology for a finite number of controllers. Further research is indicated to

develop a systematic way of assuring that the active control system does not cause a

destablilzation of those modes for which the damping ratios were not specified in

advance.
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SENSITIVITY OF CLOSED-LOOP MODAL PARAMETERS OF
CONTROLLED STRUCTURES TO SENSOR/ACTUATOR

PLACEMENT AND FEEDBACK GAINS

James A. Fabunmi
AEDAR Corporation
Landover, Maryland

ABSTRACT

Computer algebra (MACSYMA) has been used to derive the characteristic
polynomials which determine the closed-loop frequencies and damping coefficients of
output-feedback controlled structures. These expressions show explicitly how the
locations of the actuator/sensor pairs and the displacement and velocity feedback
gains influence the frequencies and damping parameters of the closed-loop system
modes. For lightly coupled modes, simple relations are obtained between the modal
parameters and the coordinates of the sensor/actuator pairs as well as the
displacement and velocity feedback gains. Using the example of a cantilevered
uniform beam controlled by a single sensor/actuator pair, numerical results are used to
illustrate the sensitivity of the closed-loop modal parameters to the placement of the
sensor/actuator pair as well as the feedback gains. Such results help to answer
questions about optimal placement of sensor/actuator pairs for the active control of a
flexible structure.



NOMENCLATURE

ai, aj = measurement coordinates for ith and jth controllers
bi, bj = force application coordinates for ith and jth controllers

C- )  symbolic coefficient of fth power of p in the i-term derivation
G(x,4,t,r) = Green's function
gi, gj = displacement feedback gains of ith and fth controllers

hi, hj = velocity feedback gains of ith and jth controllers
I - identity matrix
L = number of discrete attachments (controllers); beam length
Lxt( } = partial differential operator
p = Laplace variable (p = , + ico)

P0k = kth parameter of baseline system
Q(x,t), Q(x,p) = system response and its Laplace transform
t = time
W(x, ,p) = system transfer function
Wci(P) = transfer function of ith controller
w(x,t), w(x,p) = forcing function and its Laplace transform
x, x1 , x2  = spatial coordinates

i  coefficient of the ith power of p in characteristic polynomial

3, Pk = modal weights
8- Dirac delta function
{W, Y' = vector, with elements defined in Eq.(1 5)

=1 spatial coordinate

'0k = kth orthonormal modal function for baseline system

6,On = exponential growth rate
It time

(0,)o°n 1,wi n = frequency

= vector, with elements defined in Eq.(13)
- spatial coordinate

i], ij = matrix, with elements defined in Eq.(12)
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INTRODUCTION

Large flexible structures such as those being deployed for space-based applications
usually require some form of active control technology to maintain vibrational
response within tolerable levels [1.2]. Because space-borne structures cannot afford
the weight penalties of classical vibration control devices such as absorbers or
isolators, a lot of effort has been devoted to various means of actively controlling the
dynamic characteristics of these structures. Such techniques use an external source of
energy to apply controlling forces (and/or moments) on the structure which are
determined in some relationship to the measured or estimated response of the
structure. From a review of the literature on this subject, the approach of choice for the
design of the active control schemes appears to follow the paths of modern control
theory which involves optimal state-space feedback control[- 5], or output feedback
control[2aeJ. Preliminary to the application of optimal control techniques, a
discretization of the equations of motion is accomplished either using the finite
element method, the modal decomposition method or outright lumping of the
parameters of the structure. The state variables are the [generalized] displacements
and [generalized] velocities of the structure. In the case of state-space feedback, the
state of the system is estimated from measurements at selected coordinates and this
estimate is used to derive the feedback gains using a method based on Pointryagin's
principle for solving a constrained optimization problems which involves the
computation of a positive-definite matrix satisfying the algebraic matrix-Riccatti
equation[2c]. Output feedback control does not use the entire state-space estimate for
feedback; instead only the measured responses are used, the advantage being that
the practical implementation of the controller is simpler and errors associated with the
estimation of unmeasured responses are eliminated[6].

A considerable amount of numerical computation is involved in the implementation of
the methods currently used in practice, and it often happens that the designer is not
afforded the benefit of simple results which might aid his/her intuition in the design
process. Traditionally, regardless of what a computer program gives as a result, the
engineer still needs some method of applying simple intuitive considerations for
assessing the feasibility of the design. In classical vibration control, and even in
classical control theory, such intuitive assessments are provided by studying the
placement of the closed-loop system parameters - resonant frequency and damping in
the case of vibration control, and the placement of poles and zeroes in the case of
classical control theory. Some recent efforts at understanding the closed-loop
parameters of actively controlled structures have been reported in [7 ] and [8 ].

Techniques based on computer algebrawere developed in [11] and [12], which permit
the derivation of the transfer functions (Laplace transform of the Green's Functions) of
the system resulting from the attachment of discrete dynamic substructures to a
distributed parameter base-line structure. It is assumed that the algebraic forms of the
transfer function of the base-line structure as well as those of the discrete attachments
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are known. The mathematical form of the system transfer functions permits the direct
determination of the system parameters which are the complex values of the Laplace
variable at which singularities of the transfer function occur. When the measured
output are proposed as the feedback variables in an active controller design, the
resulting system is mathematically equivalent to that of the attachment of discrete
"substructures" [131, the transfer functions of which are given by expressions involving
the gain constants and the Laplace variable. In this research effort, these computer-
algebraic tools have been used to derive explicit expressions for the closed-loop
system parameters, in terms of the sensor/actuator placement and the displacement
and velocity feedback gains. The goal is to develop insights into how the placement of
the sensor/actuator pairs influences the sensitivity of the closed-loop system
parameters to the feed back gains. Whereas modern control theory provides a means
of calculating the feed back gains which optimize a defined objective function, nothing
is said about the influence of the placement the sensor/actuator pairs. It is expected
that the present approach will help answer questions regarding the optimal placement
of sensor/actuator pairs for active control of flexible structures.

The paper has been organized as follows. In the first section, the equations which
were used to derive the effects of active controllers on the system parameters are
derived. The second section presents the expressions for the characteristic
polynomials for the closed-loop system, obtained using MACSYMA on the Symbolics
3620 workstation. For lightly coupled modes, simple approximate relations are
obtained between the modal parameters and the coordinates of the sensor/actuator
pairs as well as the displacement and velocity feedback gains. Using the example of a
cantilevered uniform beam controlled by a single sensor/actuator pair, numerical
results are usud to illustrate the sensitivity of the closed-loop modal parameters to the
placement of the sensor/actuator pair as well as the feedback gains.

SECTION I . ANALYSIS OF ACTIVE CONTROLLER EFFECTS

The objective of this section is to present the formulation of the equations that were
used to derive the transfer function of the system resulting from the attachment of a
finite number of discrete linear output feedback controllers to a distributed parameter,
baseline system such as a flexible structure. These derivations follow the same lines
as those presented in [11] and [12], but because these references may not be easily
accessible to the reader, the relevant parts of the derivation are repeated here for
completeness. The dynamic response of a distributed parameter system are solutions
to partial integro-differential equations which can be represented operationally as:

Lx.{Q(x 2,t)} = w(x1,t) (1)

where Lxt { is an integro-differential operator which maps the responses Q(x2 ,t) on
to the excitations w(x1 ,t) subject to appropriate boundary and initial conditions on
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Q(x2 ,t); x1 is in the spatial domain of the excitations, x2 is in the spatial domain of the
responses and t is time. For linear operators, the Green's function G(x, ,t,t) is defined
such that:

LX.{G(x 2 1i,t, 0 )1 = 6(x,- 8)(t- 'r) (2)

where 8( ) is the Dirac-delta function. The response of the system can be conveniently

written in terms of the Green's function as:

Q(x2,t) = JJ G(x2,4,t,,r)w(4,')d~dr (3)

since,
Lx.f{Q(x 2,t)) = jj LX,,{G(x 2 ,4,t, ,r)}w(4,'r)d~d

= jj 8(x, - 4)6(t- ?)w(4,'r)d~dr

= w(x,,t) (4)

Butkovskyi [14] has proposed the introduction of a linear distributed block - in analogy
to the lumped parameter block in classical control theory - to represent the input-output
relationship between Q(x2 ,t) and w(x1 ,t). Thus the schematic of Fig.1 (a) is equivalent
to the relationship expressed in Eq.(3 ) . For dynamical systems whose responses to
stationary excitations are stationary, i.e. the Green's function is stationary in time, the
analysis can be simplified by considering the Laplace transform of the equations of
motion. The role of the Green's function is played by the Transfer function, and the
relationship of the Laplace transform of the response Q(x 2 ,P) to that of the excitation
w(x 1 ,p) is given by:

Q(x 2,p) = JG(x2,4,p)w(4,p)d4 (5)

where p = a + ico is the Laplace variable; a is the exponential growth rate, and CO is the
frequency. This relationship is also depicted schematically in Fig. 1 (b).
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w(x,,t M G(x2, t,1;C) F--10 Q(x2,t )

(a) Green's Function Representation

w(xj'P) "- W(X23' 4'P) 1 ft Q(x21P)

(b) Transfer Function Representation

Figure 1. Linear Distributed Block.

Modelling of Active Controller Attachments

The implementation of the active controller design with displacement and velocity
feedback involves the application of excitation forces at some spatial coordinate x1 =

bi, which are proportional to displacements and velocities measured at x2 = ai.For

example, the ith controller excitation force could be written as:

w,(b,,t) = gQ(ai,t)+ hQ(a,,t) (6)

where gi and hi are the displacement and velocity feedback gains of the ith controller
respectively, i = 1,2 .... L, L being the total number of controllers. The Laplace transform

of Eq. (6) results in a relationship which is used to define the transfer function of the ith

controller as:

W, (p) = w(bip)
Q(ai,p)

= gi + hip (7)

The schematic which represents the combined interconnected system of the baseline

structure and the L active controllers is shown in Fig.2.
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w(xbx KIpa

Figure 2. Schematic of Interconnection of Linear Feedback Controllers to
Distributed Parameter Baseline Structure.

The transfer function of the combined system shown in Fig. 2 is given by the following

integral equation['4]:

W(xI IP) f WT (x, 1,p)W(mI , p)d + WO (x,, p) (8)

where,

WTx,~,) W(x, 71,p)y 3('i - bi)W,0 (p)3(4 - a~i

= ~ (x, b,p)W (p)8(4 -at) (9)

Substituting Eq.(9) into Eq. (8) and performing the integration, the resul t is,

L
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In order to solve for the quantities W(ai,4,p), i = 1,2,....L, both sides of Eq.(1O) are

successively multiplied by S(x - am) and integrations are performed over the x domain

for m=1,2 .... Ltoget:

LW(a,, 4,p) = .,WO (a,,bi,p)W=(p)W(,4,p) +We (a.,,4,p) (11)
i=1

Eq.(1 1) is a system of L linear equations defining L unknown quantities. If an (LxL)
matrix [0] is defined such that its elements are,

f,.j = Wo(aj,bip)W (p) (12)

and if an (Lxl) vector {o)} is defined such that its elements are,

oi = W(a ,p) (13)

then the system of Eq. (11) for m = 1,2 ..... L can be written in a compact form as:

{w} = [fl{O} + {} (14)

where {7} is an (Lxl) vector whose elements are,

yj =Wo(aj, ,p) (15)

From (14),

{CO} = [I- K]-'{y} (16)

where I is the (LxL) identity matrix.

,APLICA T/ON OF COMPUTER ALGEBRA

The general algebraic form of the transfer function of the baseline distributed system

is taken to be [15,16]:

WO (x' 4,'P)= 9 W 90k (Q(17)
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where 0k(X) is the kth orthonormal modal function for the baseline structure, P0k is the

corresponding modal parameter and Ok2 is the weighting factor. Although the

summation in Eq. (17) includes an infinite number of terms, the practical
implementation of that expression requires that only a finite number of terms be
retained. The ability to retain a given number of modes in the algebraic derivation
depends on the power and memory of the computer as well as the number of discrete
modifications to the baseline structure. The substitution of Eq. (17) into Eq. (16) and
the subsequent evaluation and simplification of the transfer function of the combined
system as shown in Eq. (10) is performed using the following set of MACSYMA
routines:

WO(EXX,XXSI,PEE):=BLOCK(
PURPOSE:"EXPRESSION FOR TRANSFER FUNCTION FOR BASELINE
STRUCTURE - I.E. THE FUNCTION WO(XXSI,P)"
RAT(SUM('PHI(EXX,K)*'PHI(XXSIK)/(PEE2-('PO[K]A2),K,N 1 ,N2))/'BSQ)$

GAMMA VECTOR(XXXSIARGP):=BLOCK(
GAMMA:ZEROMATRIX(NS, 1),
FOR J THRU NS
DO SETELMX(WO('A[J],XXSIARGP),J, 1,GAMMA))$

OMEGA_MATRIX(ARGP):=BLOCK(
CAP_OMEGA:ZEROMATRIX(NS,NS),
FOR I THRU NS
DO(
FOR J THRU NS
DO (W0IJ:W0('A[J],'B[I],ARGP),
SETELMX(WOU*WCP[I],I,J,CAPOMEGA))))$

W(EXX,XXSI,PEE,N 11,N22,N33):=BLOCK(
SCALARMATRIXP:FALSE,N1 :NI 1,N2:N22,NS:N33,
FOR KK FROM NI THRU N2
DO STARTP(KK),
FOR N THRU NS
DO WCP[N] :RAT(SUBST(PEE,P,WC[N])),
OMEGA_ MATRIX(PEE), GAMMAVECTOR(XXSIPEE),
MATRIX:IDENT(NS)-CAPOMEGA,OMEGA:ZEROMATRIX(NS, 1),
INVERSE_MATRIX:RAT(ADJOINT(MATRIX))/RAT(DETERMINANT(MATRIX)),
POLY:DENOM(INVERSEMATRIX[1,1]),
OMEGA:RAT(INVERSE_MATRIX. GAMMA),
Wi :RAT(SUM(W(EXX,B[I],PEE)*WCP[I]*OMEGA[I,1]I, 1,NS)+
WO(EXX,XXSI,PEE)), "DONE")$

Wi gives the expression for the transfer function of the combined system; POLY is the
characteristic polynomial of the combined system. In order to cast the resultant transfer
function into the form of Eq.(17) for the combined system, the system parameters P1k
are determined as the roots of the characteristic polynomial of the system. In the above
routines, it is possible to consider any range of terms [N 11,N22] in the baseline transfer
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function series, as well as any number [N33] of discrete attachments to the baseline
system. The computer-algebraic results that will be presented in the next section have
been generalized to the case of an arbitrary number of discrete attachments. This was
done by mathematical induction, based on the results provided by MACSYMA for
different number of attachments specified in the function calls.

SECTION I1. COMPUTER-ALGEBRAIC RESULTS

Some results of the derivation of the characteristic polynomials for an arbitrary number
of attachments using one- and two terms in the base-line transfer function series, are
presented in this section. These derivations were performed on the Symbolics 3620. A
uniform one-dimensional baseline structure was assumed in this study, so that Dk2 =p 2

for all the k's.

One-term derivation:

In order to simplify the analysis of the sensitivity of individual modal parameters to the
active controlle, design variables such as sensor/actuator placement and
displacement and velocity feedback gains, the assumption is made that the modes of
the baseline structure are uncoupled (which is reasonable if the baseline structure is
very lightly damped). This allows the transfer function given by Eq.(17), for
frequencies close to the resonance of a specified mode, to be approximated by one
term in that series which represents the contribution of that mode. The characteristic
polynomial for the closed-loop system is then obtained as:

POLYNOMIAL(1 ) = C ()p 2 + C (') (p) (18)
where,

L

Co O (p) = -,n 2 p o,- {(b) (19)
i=1

and,
2(20)

Note that the polynomial in Eq. (18) is not yet fully explicit in p until the expressions for
Wci(p) are substituted into Eq. (19). If these functions are as shown in Eq.(7) then,

L

C (1) (p)= -f. 2p -,_ {(g,+hjp)4p,, (a,)9q (b)} (21)
ii

So that for this class of active controller design, and using the one-term approximation

to the baseline transfer function, the characteristic polynomial in p whose roots are the

10



system parameters, is given by:

POLYNOMIAL(1)= {12} p2 - {(h,9on,(a),o,(b))} P

- { +2p, + "{gj 9,,(a,)io,(b)}} (22)

Two-term derivation:

For closely coupled modes, the preceding approximation may not give adequate
results. The next level of refinement is to consider the combined contribution of two
neighboring modes. For this case, two terms are retained in Eq.(17), and the
polynomial derived by the computer-algebraic routine is:

POLYNOMIAL(2) 4 C 2)p4 +C 2 )(p) p2 +C02 )(p) (23)

where, C(2)=(p2)' (24)

j=1 i=1jlJ

=-(i3 2)2 T{po.,} - wVV(p) L" Vo°,a, q o.(a) 3,n(b,)} (25)

and,

C( 21 (p)= (W.p)p29) po)

2) wIp )L o. ,) o. (a) 470,  o (bio°(,)"

2p , L ] .0 (b,)fJ

2){ 2 P Y'op PIP

L W,(p) on,(a,) ig o o (b)(507_ o _n, , 26
+1~~ ~ W'eo.f9 ,(b, P)n2) -o.nb2 2 on,(b)

WL ()W({ L ~(a 9) onjaa (26)+X I {

As mentioned earlier, the explicit dependence of the polynomial on the Laplace
11



variable p will be determined when the appropriate expressions are substituted for the
functions Wci(p). If the controller transfer functions given in Eq.(7) are substituted into
Eq. (25) and (26), then following a collection of the coefficients of the powers of p in the
polynomial of Eq. (23), the result is:

POLYNOMIAL(2) =a 4p 4 +a 3 p3 +a 2 p2 +a, p+a 0  (27)

where,

a4( 2)2 (28)

a3  1 . " , (ai) P 4po.,(ai) J iqpo,,(b) (29)

a =-1 I L a o, / (a,)J{o (b)j

8I2)211~n} {g , 0~(b,)I
I .f q o°(a 1 'i [9 ,(a - (a)' P o,(a )

q 0 ((a) -'Pon2(a) (30 )on(

L L 0 o(a1  ),(a 1) (31)
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ao = ( p2 ,) (#2p2,)

0 pn2 0 (b,)
4+ giL/ o.(a) P 90, (a,) PO n ' 1 '

1(32)1 f fi L (o,a ) -4po,a,) . l( J)f
+=_..>1 x< L 0 ,ob., (b,) ,b , }) 1 o<,(bi

As far as the computer algebraic procedure is concerned, any number of terms in
baseline transfer function expression can be used. However, it is clear that such
expressions will be complicated and are better left in the memory of the computer.

SECTION III. SENSITIVITY ANALYSIS

Lightly coupled modes:

For the purpose of this paper, which is to examine simple but intuitive relationships
between the closed-loop system parameters and the design variables of the active
controller such as the actuator/sensor pair placement and the displacement and
velocity feedback gains, it is assumed that the uncontrolled structure is very lightly
damped, and hence its orthonormal modes are weakly coupled. This assumption
allows the one-term derivation that resulted in Eq.22. Moreover, since interest here
lies in sensitivities of the modal parameters, rather than their exact values, this simple
result remains useful for developing insight into how the controller design affects the
closed-loop parameters. Equating the polynomial of Eq.22 to zero and solving for the
real and imaginary parts of Pini, with the assumption that the baseline structure is

undamped (i.e., Poni = iw0 nl), the frequencies and exponential growth rates of the

closed-loop modes are;

Wi,-7 h i )n (a) ))., (b j)) 2 gi90,(a) q~. (b 1)) (33)

1 LO'i,n = P y f h lp . ai) ipon, (bj) }  (34)

As suspected, the damping of the closed-loop system is controlled by the velocity feed-
back gain, whereas the frequency is affected by both the velocity and displacement

13



feedback gains. The sensor/actuator placement controls how these feedback gains
influence the frequencies and damping of the participating modes of the baseline
structure. This effect is more clearly displayed by the sensitivity of the growth rate to the
velocity feedback gains as well as the sensitivity of the frequencies to the
displacement feedback gains:

dh, 2 g, = 3 TOn, (ai)on, (b,) (35)

When the sensor and actuator of the i-th controller are collocated (i.e. ai = bi), the right
hand side (RHS) of Eq. 35 is positive, and all structural modes with non-zero values of
the orthornormal modes at the controller location, are guaranteed to be damped by a
negative velocity feedback gain. For controllers with non-collocated sensor/actuator
pairs, the RHS of Eq.35 could be positive or negative for different modes of the
baseline structure. The baseline modes for which the product (P(ai)(P(bi) is positive, will
be damped for negative velocity feedback gains, whereas those modes with a
negative product of (p(ai)(p(bi) could experience destabilization as a result of negative
velocity feedback gain.

-an. = 0 (36)
dgi

d 0)2  L 1h, =  TY hk o,,(ak ) on,(bk )5on,(a )on, (bi) (37)

As expected, the growth rate is not affected by the displacement feedback. However,
the closed loop frequency is sensitive to the velocity feedback as well as the
displacement feedback. For a single sensor/actuator pair (L=1), the sign of the RHS of
Eq.37 is dictated by the sign of the velocity feedback. In the following section, the
numerical example of a uniform cantilevered Euler-Bernoulli beam is used to illustrate
the feedback gain sensitivities of the closed-loop growth rate, as the sensor/actuator
pair placement is varied, both for collocated and non-collocated controllers.

Numerical Example'

Consider a uniform cantilevered Euler-Bernoulli beam, with parameters as shown in
Fig. 1, where the first five orthonormal modes have also been displayed. Suppose a
single sensor/actuator pair is to be employed to control the vibrations of this beam
using displacement and velocity feedback. Three situations will be examined:
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(1) the sensor and actuator are collocated at the same spanwise coordinate; (2) the
sensor and actuator are not collocated, with the sensor always at the tip of the beam;
and (3) the sensor and actuator are not collocated, with the sensor at midspan. In
each of these situations, the growth rate sensitivity to velocity feedback gain for
different locations of the actuator, will be studied. The growth rate sensitivity to velocity
feedback gain is characterized by the partial derivative of the growth rate with respect
to the velocity feedback gain. As given by Eq. 35, this quantity depends on the
locations of the sensor and actuator. For vibration suppression, it is required that the
growth rate be negative, and also that its sensitivity to velocity feedback gain be of the
same sign for all the modes of the structure. If the sign of this sensitivity is not the
same for all modes, velocity feedback gains which suppress the vibration of certain
modes, will tend to cause increased response others.

The plots of the growth rate sensitivity to velocity feedback gains for different locations
of the actuator are shown in Fig. 2-4. Fig. 2 is for the case where the sensor and
actuator pair are collocated, whereas in Fig. 3 and 4, the sensor and actuator are not
collocated. In Fig. 3, the sensor is always at the tip, and Fig.4 is for the case where the
sensor is always at midspan. When the sensor is collocated with the actuator, as in
Fig.2 for all locations of the actuator, or in Fig. 3 when the actuator is at the tip, or in
Fig. 4 when the actuator is at midspan, the growth rate sensitivity to velocity feedback
retains the same sign for all the modes of the beam. Collocated sensor/actuator pairs
near the tip of the cantilevered beam have higher sensitivities of the growth rate of the
lower modes to velocity feedback, than the higher modes. This situation is reversed
near the root of the beam. When the sensor is not collocated with the actuator, there
are sign reversals of the growth rate sensitivity to velocity feedback, for different modes
of the beam. In these cases, the same velocity feedback gain which increases the
damping of certain modes, will reduce the damping of others. These effects are well
known, and are not surprising. What is interesting in the present approach is that these
sensitivities can be quantified explicitly. Trade-offs can be made with regard to the
selection of modes which need maximum sensitivity, at the expense of other modes
which may not be critical in a given application.

This example has been presented as a simple illustration of how the results of this
analysis could be used in guiding the selection of sensor/actuator placements. In most
practical applications, the orthonormal modes may not be available in analytical form.
It may become necessary to conduct experimental modal testing, in order to obtain the
modal data required by this approach. Regardless of how the modal data is obtained,
the simple expressions derived in this paper can be used to obtain preliminary
assessments of the most advantageous placement of sensor/actuator pairs for active
vibration control.
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SECTION IV. CONCLUSION

The sensitivities of closed-loop system parameters to displacement and velocity
feedback gains are important considerations for the placement of sensors and
actuators for active suppression of structural vibrations. Whereas optimal controller
design methods using modern control theory can yield the optimal feedback gains,
they do not provide insights into to the placement of the sensors and the actuators for
the best effect. Using computer algebra, explicit expressions have been derived for the
sensitivities of the closed-loop system parameters such as resonant frequency and
exponential growth rates, to velocity and displacement feedback gains. These
expressions make it possible to select locations for sensors and actuators, at which the
closed-loop system parameters have the desired sensitivities to the velocity and
displacement feedback gains. Numerical examples based on a cantilevered uniform
beam were used to illustrate the application of this method, and to show that it is
possible to conduct a rational assessment of the most advantageous locations of
sensors and actuators for active control.
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